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We consider the configuration properties of a periodic multiblock copolymer made of a regular
alternating succession of two monomer species A and B near interfaces between two weakly selective
solvents a and 3. Both solvents are assumed to be good, but their quality is slightly different for
both monomer species: Solvent « is better for A than for B, and vice versa. We map the problem
into a corresponding homopolymer adsorption problem by considering the individual AB-diblock
units as effective segments of a coarse-grained chain. The renormalized segments have an effective
interaction with the solvent-solvent interface. This is calculated to second order in a perturbation
expansion. We show that attraction of a single diblock by the interface is a second-order effect.
In the symmetric case the first-order contribution vanishes and the interface is always attractive.
The strength of the effective attraction scales as (xn)?, where x is the selectivity strength and
n the length of an AB unit. When the interface potential is not symmetric with respect to the
block species, a first-order repulsive contribution appears. As a result we predict a discontinuous
desorption transition for that case, controlled by the asymmetry. In marked difference to the usual
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adsorption problem, the largest stable adsorption blob is of finite size.

PACS number(s): 61.25.Hq, 82.65.Dp, 36.20.—r, 05.40.+j

I. INTRODUCTION

Copolymers consisting of two different monomer
species A and B are currently one of the most inten-
sively studied topics of polymer science. Roughly one
has to distinguish between random and periodic copoly-
mers in respect to the distribution of the A and B species
along the chain. This work is restricted to periodic multi-
block copolymers comprising an alternating succession of
A and B blocks with lengths n 4 and ng, respectively. It
is possible to consider such copolymers as homopolymers
where each “monomer” is an AB diblock.

Much theoretical and experimental work has dealt re-
cently with the behavior of copolymers in selective sol-
vents that are poor for one monomer species and good
for another. In order to fix the notation we denote the o
solvent, which is better for A and poorer for B. In the
opposite case we call it a 3 solvent.

This paper is concerned with the behavior of ideal pe-
riodic copolymers near the interface between an a and a
B solvent [1]. When the polymer chain is at the inter-
face both A and B blocks can be in their better solvent
[Fig. 1(a)]. Hence, the free energy of the chain is lowered
and the chain is attracted by the interface. This is of
considerable technical importance since copolymers ad-
sorbed in that way modify the solvent-solvent interface
tension.

From the conceptual point of view it is useful to dis-
tinguish between two cases: strong and weak interface
selectivity.
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The interface is strongly selective when both monomer
species experience a strong repulsion (compared to kgT')
by crossing over from the preferred to the other solvent.
Hence, the A blocks are only in the o solvent and the
B Dblocks in the 3 solvent. As a consequence each AB
junction sticks to the interface [Fig. 1(a)]. Dragging it
away from it implies an increase of the free energy by
more than kgT. So each block is strongly attached to
the interface at both ends. The adsorbed chain is lo-
cated within the size of a single block in the direction
perpendicular to the interface [3] W4 g ~ n;/ 23.

In the following we will focus on the opposite case of
weak interface selectivity. This means that the two sol-
vents are good for both species but there is a weak repul-
sion if an A(B) monomer crosses the interface from the
a(f) into the B(a) solvent.

In this case there is a competition between the free-
energy gain caused by the orientation of each AB unit
at the interface and its conformational free energy. As
a result the individual diblocks are only weakly oriented
by the interface selectivity though their free energy is
lowered compared with the bulk. Hence, in contrast to
the case of strong selectivity a single AB unit itself is
attracted but not adsorbed.

However, the multiblock copolymer as a whole may
adsorb at the interface due to the cooperative effect of
the many diblocks it is made of, but the extension of
an adsorbed chain in the direction perpendicular to the

interface is much larger than the size of a single diblock
[Fig. 1(b)].
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Hence two questions arise. First, what is the crossover
chain length; the characteristic chain length necessary for
adsorption at the interface? Second, what is the width W
of the adsorbed polymer chain in the direction perpendic-
ular to the interface well above the adsorption crossover?

In the limit of weak selectivity all relevant distances
in the problem are much larger than a diblock size R.
This suggests that we may consider the AB units as new
statistical segments of a coarse-grained chain, having an
effective interface interaction. We will calculate this ef-
fective interaction within a perturbation expansion.

The parameters necessary for the description of the
adsorption behavior are both block lengths and chemi-
cal potentials of the solvents. As we will see, there is a
symmetry line where the chain is always attracted. The
simplest realization of this symmetry is what we call the
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FIG. 1. (a) Multiblock copolymer at a strongly selective in-
terface. All junction points between different blocks stick at
the interface. Each block configures freely within its preferred
half space. (b) Multiblock copolymer near a weakly selective
interface. Only parts of the chain that actually cross the in-
terface (surrounded by circles) will be weakly oriented and
can lower the free energy. Most of the blocks are completely
on one solvent side. Every monomer feels an interaction po-
tential near the interface sketched in the upper left corner. It
differs between the A and B species so that the left side is
preferred by the A blocks and the right side by the B blocks.

fully symmetric case. Here both block lengths are equal,
na = npg, and the differences of the solvent qualities
(selectivity) for both monomer species by crossing the
interface are also equal.

However, if this symmetry condition is violated the
interface acts like a combination of a potential step and
an attractive part. Competition between both parts gives
rise to a phase diagram comprising an adsorbable region
and a region where adsorption is not possible even for
infinite chain lengths.

As we will see, the adsorbable region around the sym-
metry line is very small. Hence, the interface is very se-
lective with respect to different copolymer architectures:
only those copolymers that are very close to the symme-
try condition are adsorbed.

The paper is organized as follows: In Sec. IT we define
the coarse-graining procedure and develop the perturba-
tion expansion for a single diblock. In Sec. III we present
the results for the fully symmetric case for the potential
as well as for the block lengths. The general asymmet-
ric case is considered in Sec. IV. We conclude the paper
with a discussion of the results in Sec. V.

To avoid repetition we take kgT as the unit of the
energy.

II. RENORMALIZATION PROCEDURE AND
PERTURBATION EXPANSION

The interaction potential of monomer s at distance z
in the direction perpendicular to the interface will be
denoted by V(z,s). Since we have only two monomer
species A and B there are only two different potentials
Va(z) and Vg(z).

The left part of Fig. 2(a) shows a possible realization.
Since the interaction of one monomer species with the
corresponding potential is completely independent of the

. . F(r)

FIG. 2. (a) A possible realization of the selectivity poten-
tial in the general case. Since only the potential differences
matter for both species independently, it is possible to gauge
them as sketched in the right-hand side. The individual po-
tential differences are denoted by x4 and xB, respectively.
For the case of a fully symmetric potential (b) a different
gauge is more convenient. Going over from one species to the
other the potential is simply mirrored. This allows for the
separation of arclength and spatial dependencies.
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other we can gauge both potentials in an arbitrary way.
One can understand this, for instance, by considering
the diffusion dynamics of the monomers. As long as
a given monomer does not cross the interface it moves
in a constant potential and the motion is unaffected by
that potential. If it does cross the interface only the dif-
ference or the potential step matters. This is true for
both species independently. Hence, only the differences
[AV4(z), AVp(z)] are physically relevant quantities. We
will gauge the individual potentials for the general asym-
metric case as sketched in the right part of Fig. 2(a). The
corresponding quantitative expressions are

, 2<0
VA(Z):{?](,A z >0,
0 <0 (1)
b Z_
Vo) ={ 5, I30

However, if the selectivity potential is symmetric with
respect to the monomer species we will use the gauge
‘given in Fig. 2(b). This gives us the possibility to sepa-
rate the interaction potential in the following way:

V(z,t) = U(2)b(t). (2)

U (z) is the value of the interaction of one block species
(A), at the distance r perpendicular to the interface.
b(t) characterizes the arrangement of A and B monomers
along the chain. We will call b(¢) the block structure func-
tion. For the symmetric gauge [Fig. 2(b)], going from one
monomer species to the other means simply switching the
sign of the function U. Hence b(t) has the form of Heav-
iside’s function:

_J 1, 0<t<ny
o= { by EEEI )

where n 4 is the length of an A block and ng =n —ny4
the corresponding length of the B block.

There exists an interesting analogy to a corresponding
quantum mechanical problem: Firstly, b(t) is a simple
periodic function for the multiblock copolymer chain as
a whole in the case ng = np. On the other hand it is
well known that the configuration properties of a poly-
mer chain can be described by a Schréodinger-like differ-
ential equation with the proper coupling of an external
potential. Hence the differential equation describing the
Green function of a polymer chain with a potential given
by Eq. (2) is very reminiscent of the propagation of a
Schrédinger particle in a time-fluctuating field. We dis-
cuss this analogy in detail in Sec. IIIB and Appendix
A.

In Figs. 2(a) and 2(b) we have considered sharp inter-
face potentials that may be approximated as step func-
tions. More realistic would be a smooth variation of the
following form:

Va,B(z) = xa,Btanh(z/wa,B) . (4)

If the characteristic width of the potential w is much
smaller than the extension of a single diblock the step
function approach is sufficient. In the opposite case w be-

comes a characteristic parameter controlling the diblock-
interface interaction too. For the general asymmetric
case we will only consider the step-function approach in
this work.

We consider ideal chains and separable interaction po-
tentials as a function of z only. Hence, it is sufficient
to treat the direction perpendicular to the interface only.
There is no coupling between the different spatial direc-
tions and the behavior parallel to the interface is simply
ideal.

As mentioned in the Introduction, the copolymer chain
can be considered as a homopolymer made of a succession
of f head-tail linked identical diblocks. This suggests in-
troducing a renormalization step averaging out all details
within the scale of a single diblock. This procedure can
be justified mathematically as follows.

First of all, the partition function is an integral over all
monomer positions of the chain weighted with the appro-
priate potentials for the next-neighbor bonds along the
chain and external potentials. The way these integrations
are carried out has to be arbitrary.

We start by integrating out all internal monomer po-
sitions of the individual diblocks first. Only the junction
points that link the diblocks to each other should be left
over. We assume for simplicity that they are neutral with
respect to the selective potential.

The internal integration gives for each diblock a contri-
bution Z that depends on its initial and final positions.
We can write it in the form Z = e Feauwss—AF g
is a corresponding harmonic contribution for the coarse-
grained chain [see Eq. (5)]. It can be extracted since it
is known that the renormalized chain possesses a simple
chain connectivity. Hence we have reproduced a partition
function for a coarse-grained polymer chain that is now a
homopolymer and each monomer has the same effective
interaction AF'.

So far no approximations are made and the renormal-
ized partition function is exactly the same as the original
one. However, we are not interested in the behavior of
the chain on length scales smaller than the size of a di-
block. Hence, the effective diblock-interface interaction
can be simplified as a function of the central position of
a given diblock only: r = %ﬂ [z(n) and z(0) are
the final and the initial positions of the diblock, respec-
tively]. This neglects fluctuations on scales of the order
R. Figure 3 illustrates the described steps of the proce-
dure. The free energy for each configuration {r;} of the
renormalized chain takes the form

1 =
Fenain({ri}) = 53 ;(Ti-kl —r)> +AF(ri) ,  (5)

where R is the averaged end to end distance of a di-
block [2]. Hence the calculation of the effective interface
interaction of a single diblock AF(r) is the basic step
in our approach. We consider now this problem in more
detail.

A given diblock will have a favored solvent side if it
is far away from the interface, i.e., completely in one
solvent. This is generally so when the symmetry equation

nAXA = NBXB (6)
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is violated. Let us denote the free energy in the preferred
solvent side by Fo = min(naxa,nBxg). Since a constant
free energy or chemical potential does not matter, only
the difference AF(r) = F(r) — Fy is relevant.

Two qualitatively different effects occur if the diblock
approaches the interface from the favored side. First, the
free energy increases since parts of the diblock are dis-
solved in the other solvent. On the other hand, the di-
block will be polarized due to interface selectivity, which
lowers its free energy; see Fig. 5. We will demonstrate
that the competition of these two effects governs the ad-
sorption of the whole copolymer chain at the interface.

In the symmetric case when the average solvent quality
is equal in both solvents only the polarization contribu-
tion is present and the copolymer can be adsorbed.

We consider now the calculation of the effective free en-
ergy AF(r) of a single diblock near the interface. Since
the selectivity potential is weak, a perturbation expan-
J

sion with respect to V(z,s) is appropriate. The free-
energy expansion F'(r) up to second order takes the gen-
eral form

F(r) = (V)o(r) = 3[(V*)o(r) = (V)5 ()] £--- . (7)

The two contributions can be written in terms of Green
functions of the unperturbed ideal chain,

as follows:
V=2 [ ds [ awscey—2nm) ()
0 —o00

and

n t oo
(V2 =4/ dt/ ds/ dzdyGl(z — y,t — 8)G(z +y — 2r,m — t + )V (2, )V (u, 1) - (10)
0 0 — o0

The factor 2 in Eq. (9) arises for the proper normaliza-
tion by going over to the center coordinate. For Eq. (10)
the arclength ordering gives an additional factor of 2.

We end this section with a few general remarks about
the potential used. It is assumed that both solvents are
of slightly different quality for both species but with both
being good. In the case when one solvent quality is close
to the © point, the configuration statistics of the blocks
is changed by crossing the interface. In an extreme case
both block species could be in a swollen configuration in
the favored solvent and in a collapsed configuration in the
other solvent. However, the last scenario cannot be de-
scribed within a bare perturbation expansion. The case
where both solvents qualities are around the © point for
both species would allow for a weak potential difference
but will not be considered here.

III. SYMMETRIC CASE

We start with a discussion of a symmetric selectivity
potential using Eq. (2). More precisely U (z) interpolates
between —x for z - —oo and +x for z — +o00. For
simplicity we assume U(z) = —U(—=z). The diblock ar-
chitecture is also considered to be symmetric: ny = ng.

Since the potential and the block chemical structure
are assumed to be symmetric, F'(r) = AF(r) vanishes
if 7 is much larger than the radius of gyration R of the
diblock. On the other hand, if the width w [see Eq. (4)]
is much larger than R, F(r) is nonzero for all positions
within a distance w. The first-order contribution accord-
ing to Eq. (9) takes the form

(VYo =2 /0" b(t)dt /dm G(2z — 2r,n)U(x). (11)

gauging

VA®
VA v Vp®

(a)

Vv
RS v
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FIG. 3. Renormalization procedure. The chain is consid-
ered as a succession of head-tail linked diblocks. At the first
step the junction point denoted here as a bullet is keep fixed
while the averaging over the rest of the monomers is car-
ried out. Before the coarse-graining procedure, the potential
V(r(s)) depends on the actual position r of every monomer
s. After averaging out the middle monomers the effective po-
tential AF depends only on the set of fixed points {zx}. It is
convenient to go over to an alternative set of coordinates {7}
which corresponds to the center positions of the renormalized
segments. This results in the function AF(rg).
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If ny = np or more precisely fon b(t) = 0, there is no contribution from (V'),.
We now consider the second-order term in Eq. (7) given by Eq. (10). Using Eq. (2) we have

(V2>0 =4 /Ondt /Otds b(s)b(t) /‘::dmdyG(a: —y,t—8)G(z+y—2r,n— (t —s))U(z)U(y).

It is now possible to get all the n, u, and w depen-
dences without really doing the remaining integrals. Let
us introduce scaled variables in the following way: All
arclength parameters should be given in units of n and
all spatial scales in units of \/n. Equation (8) gives us
the corresponding scaling for G. U(z) can be written as
xI(z,w) where I interpolates between —1 and 1. Quite
generally we can assume I(z,w) = I(z/w). As a result
the integral of the scaled variables depends only on w//n
and r/4/n. Using Eq. (8) the general form of the above
expression is

1

F(r) = (V%) = —xn% (% 75) S

where « is the result of the integration. The effective
potential for a single diblock now has a form that is easily
treatable for the following special cases.

A. Sharp interface potential

For the case w <« /n, I(z) can be approached by a
steplike function. This means that there is no scaling for
w/+/n. The only dependence left in k comes from r.

The renormalization step provides a smooth potential
F(r), which basically extends from —R to R; see Fig. 4.
However, we are not interested in the behavior on scales
smaller than R. So it will be sufficient to average the
effective potential F'(r) over the interval (—R, R) and re-
place it by a boxlike shape. This is also sketched in Fig. 4.
Hence, we introduce an average effective potential of the

diblocks F(r):

. 0, r>R
F(r)y={ (F), —R<r<R (14)
07 T S _Ra
where (F) is
1 R
(F) = —x*n? — dre(0,7/v/n) = —x*n’ko (15)
2R J_g

(12)

Ko is a positive numerical positive constant independent
of the size of the diblock and of the strength of the selec-
tivity. It may be computed numerically.

Note that Fiin, the minimum of F(r), scales in the
same way: (F) ~ Fpi, = F(0). In Sec. IV we con-
sider the minimum value Fy;, instead of (F') because it
is easier to handle in the asymmetric case. If we are not
interested in the precise values of the constant prefactors
it makes no difference whether (F') or Fiy is used.

We obtained an explicit expression for the effective at-
traction of a single diblock near a selective interface. The
interaction F' is short ranged if R is considered as the
smallest scale of interest. Its value scales with the square
of the product of block length n and the selectivity x.
The multiblock copolymer chain may be considered as
a homopolymer weakly attracted by the interface with
strength (F').

B. Smooth interface potential

For w > R an additional scaling arises from w/y/n in
the integral k. Using Eq. (4) for the selectivity potential
three different regions may be distinguished. For |z/w]|

1(s) rkn)=r = ——=

S "‘x) :3 \?,‘\‘ - m % ;kéVO\f
R T A W :

V() ——————= E(rpr,) ————= E@)

FIG. 4. Effective interface interaction for a single diblock.
Fixing the center of mass r the average interaction free energy
F has a shape sketched in the upper right part. Basically it is
extending from —R to R. Since the renormalization procedure
“washes out” the details for scales smaller than R along the
chain it makes sense to average the effective interaction on
this scale. The result is a boxlike attraction potential F given
in the right part of the figure.



910 J.-U. SOMMER AND M. DAOUD 53

larger than unity the potential reaches the asymptotic
values —x or x. Hence the effective interaction potential
goes to zero as expected. w gives its range. In the case
where |z/w| is much smaller than unity it can be approx-
imated by a linear function. We will call this region the
gradient region. Finally, there remains a crossover region
in between both. We will calculate the effective poten-
tial for the gradient region exactly. This can be done
in principle with the whole series expansion of the tanh

|

function. However, because this gives no more insight
into the physics behind it, we propose an interpolation
function capable of describing the crossover to the sharp
interface as well.

In the gradient region we have I(ﬁ/%) = —\/%/—\1/"—;
However, in this case the remaining integrals are solvable.
So we can obtain the numerical constant as well. In the
present case F'(r) takes the form

F(r) = -insw'22/0 [) dsdt b(s)b(t) //dmdy Gz —y,t —s)G(z +y—2r/vn,1 — (t — 5))zy. (16)

The z,y integrations are now standard Gaussian inte-
grals after decoupling them by transforming the integra-
tion variables into T = ¢ —y and ¥ = 1/2(x + y). The
result is

F(r) = —x*nfw™?%/24 | (17)

independent of r.

The averaging over R is not necessary since the effec-
tive potential is constant in the gradient region. More-
over, the approach is the exact result since the interaction
potential V(z(s)) is linear in z(s).

The crossover region provides higher-order terms in
n/w? than the result in the above equation. These will
also depend on r. Since we assume that n/w2 < 1 the
correction from the crossover region can be neglected. We
can assume a constant effective attraction of the diblocks
given by the above equation in the interval (—w,w).

However, it is possible to give a convenient interpo-
lation function from the smooth to the sharp interface
behavior. Comparing Eqgs. (15) and (17) the following
function is suggested:

(F) = —x*n® (W%RTE) . (18)

We show in Appendix B that the scaling approach natu-
rally yields an expression like this.

It is interesting to compare these results with those by
Cook, Shakland, and Wells (CSW) [4]. These authors
considered the possible localization of an electron in a
time-periodic external field. They give an explanation
for the so-called Pauls traps. It is well known that the
propagation of a Schrédinger particle in an external field
is described by an equation very similar to that describing
the configuration of polymer chain in a corresponding
field.

Thus the trapping of a Schrodinger particle in a time-
fluctuating field is very reminiscent of the attraction of a
multiblock copolymer chain in a symmetric selective po-
tential; both systems are described by the same Hamil-
tonian. The time variable in the quantum-mechanical
problem corresponds to the arclength parameter of the

polymer chain. The eigenvalue problem is exactly the
same. In Appendix A this method is reconsidered for the
polymer case.

The basic idea is to separate the Green function for
a periodic multiblock copolymer into rapidly oscillating
and slowly varying parts. The fast part oscillates with a
period of the diblock length and will be dropped. The dif-
ferential equation for the slow part is again a Schrodinger
equation with an effective Hamiltonian. The leading con-
tribution after averaging over the period is an attractive
potential independent of arclength. It has the general
form
2 1P 2

Ueg = —n 9 x 32 (VU)

(19)

A difference is that the resulting effective equation for
the polymer is not coarse grained. That means the above
potential is the effective attraction for a monomer rather
than for a diblock.

For the smooth interface the CSW method gives the
same scaling as the renormalization approach. Coarse
graining instead of averaging in the derivation of the
above equation would yield an additional factor of n
for the effective diblock attraction. However, the above
equation gives a numerical constant for the effective at-
traction much smaller than Eq. (17). An advantage of
the CSW method is the easy treatment of attraction po-
tentials like a tanh function.

It has been shown in [4] and [5] that for the sharp se-
lective case this approach breaks down. In this situation
the contributions from the other terms of the effective
Hamiltonjan (see Appendix A) become important too.
This yields a more complicated equation than the origi-
nal one.

We found that in the complete symmetric case (block
as well as potential symmetry) the effective attraction of
a single diblock by the interface follows simple power laws
with respect to the interaction potential and the block
length. It is usually possible then to derive the results
up to numerical constants using scaling arguments only.
In Appendix B we present such a simple scaling approach
using a Flory-type argument.
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TABLE 1. The various adsorption crossover values for both the sharp and the smooth interface

potential cases.

<F>C Xe fe Nc
w2/n < 1 f—1/2 f—1/4n‘1 X—4n—4 f*l/‘lx—]
- 1/2 — - —1/4 — — -1 — -
w2/n >1 f 1/2 (;nf) f 1/4n 1 (%) X 4n 4 (ﬁ) f 1/5w2/5x 2/5

C. The adsorption crossover

We will now discuss the behavior of the multiblock
copolymer chain as a whole in the presence of a weakly
selective interface. As shown above this can be mapped
into the discussion of a homopolymer consisting of f sta-
tistical segments. Each of them is weakly attracted by
the interface with a potential (F"). This is the usual poly-
mer adsorption problem studied intensively in the litera-
ture (see, for instance, [7—9]). For the case of a sharp in-
terface the attraction extends only over the range of a sta-
tistical segment of length R. An interesting point is that
we were naturally led to polymer adsorption at a pene-
trable interface. Hence, our problem brings a nonpatho-
logical realization of that problem to our attention [10].

We will treat the adsorption crossover within a scal-
ing approach. In particular we derive the adsorption
crossover value (F'). necessary to fix the chain at the
interface and the width W of the adsorbed chain for at-
traction strengths much larger than (F')..

We first assume that (F') causes only a weak perturba-
tion of the chain configuration. The chain consisting of
f repeat units near the interface will have on the average

fo ~ fwes/R (20)

repeat units within a penetrable interface of effective
width weg. If the interface is sharp its effective width
weg is equal to a single diblock size R, as shown above
(Fig. 4). While for the smooth interface weg corresponds
to w. R is the radius of gyration of the unperturbed
copolymer (R is the effective statistical segment length).
Hence, the average interaction energy with the interface
is fo(F) [6]. If this becomes much larger than kgT (or
unity in our convention) the chain is not only weakly
disturbed but is going to stick at the interface. So the
localization crossover for a single interface can therefore
be defined by

|f3<F>c| ~ 1. (21)

For the case of the sharp interface we obtain from
Eq. (20) f, ~ fY2. The crossover values of the vari-
ous variables can be calculated using Egs. (15) and (21).
We mark them with an index c. They are listed in the
first row in Table I. In the opposite case of smooth in-
terface we have N, ~ fl/zw/nl/z. Taking into account

the corresponding Eq. (17) this yields the results in the
second row of Table I.

Hence, we get a phase diagram describing the localiza-
tion behavior around a single interface. Moreover, the
interpolation formula in Eq. (18) or (B5) may be used
for w ~ y/n but we will not do this explicitly.

We consider now the case when (F) > (F).. Usually
a scaling function can be written down at this point. We
will use the corresponding blob approach. Let us assume
a part (or blob) of the original chain consists of g adsorp-
tion units (diblock units). When g is small enough the
interaction with the interface is only a small perturba-
tion. Hence the above argumentation can be completely
repeated for g instead of f. If g is of the order f. given
by the fourth column in Table I the blobs will stick at
the interface. The adsorption blobs are considered to
be just on the verge of being adsorbed. The whole chain
can then be considered as a two-dimensional chain of f/g
blobs fixed in the interface. Perpendicular to the inter-
face the chain is localized within a width W given by the
size of a blob. Using the results of Table I yields

W ~ X—zn—s/z’

win <« 1
W ~ x~2n~3/2 ( n

-1/2
;U—E) ,  w?/n > 1.

(22)

IV. THE ASYMMETRIC CASE

The fully symmetric case described above is a very
special situation. It requires both a symmetric block ar-
chitecture and a two symmetric solvents in respect to
the block species. In this section we discuss the general
case of arbitrary solvent-potential asymmetry and block
lengths.

The calculation in the previous section is not general
enough to discuss the case of an asymmetric potential.
Here the potential does not factorize as in Eq. (2) and
hence the block structure function does not decouple
from the spatial integrations. As a result we have three
scaling parameters. We choose as independent parame-
ters a = xana4 and b = xpnp and the block length ratio
Ppa = na/n (n =ny + np). The case where py is very
small or very close to 1 respectively can be considered
separately. We will show that there is a finite, not very
large, derivation from the block-symmetric case py = 1/2
then.
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We will give a scaling approach for the leading asym-
metry effect that is proved by the numerical integration
of the result of the perturbation expansion.

A. Perturbation expansion

Using Egs. (1) and (9) we obtain for the first-order
contribution:

(VYo = %(a +b)+ %(b — a)ert (%) . (23)

The error function is defined as usual: erf(z) =
2/\/m f: e~¥’dy. As discussed in Sec. II we may sub-
tract the free energy in the favored average solvent state
Fy. This can be written as Fo = min(a,b). Hence the
reduced first-order contribution AF(®)(r) is given by

AFM(r) = %|a, — blerfc (sgn(b - G)%) >0 . (24)

The complementary error function is defined as erfc =
1 — erf and sgn(z) is the sign of z.

As can be obtained from the above equation there is
no localization effect in the first order. AF()(r) is al-
ways positive. The symmetry point is given by the con-
dition (6): @ = b where the first-order contribution van-
ishes.

In the second order the leading contribution of the
perturbed chain configuration is implicitly used, so that
the chain will feel the feedback of the interface potential.
This leads to a polarization effect of the diblock at the
interface. A short derivation of the integral expression
used for the numerics is given in Appendix C.

(V%) has three contributions as shown in Appendix

1 1
2y _ 42 2
(VZ) = 4a ZquIl(pA’r)+4b (1_pA)212(pA,r)

+4ab Iy(pa,r) , (25)

pa(l —pa)

where the integrals I, I, and I3 are given in Appendix
C.

Besides this, we consider the limiting case of very small
ratios of the block length, i.e., p4 ~ 0 or ps4 ~ 1, respec-
tively, but finite values of a and b. For explicit results
see Appendix C.

Before we discuss the numerical results we present a
simple argument that leads us to a parameter character-
izing the strength of the asymmetry effect in the leading
order. However, we will see in Sec. IV C that adsorp-
tion is possible only in the case where this asymmetry
parameter is small number.

Let us introduce two new parameters instead of a and

b:

(e) = 3(a+b), (26)
Ae=(b—a) , (27)

where (e) is the averaged selectivity and Ae the asymme-
try of the selectivity potential.

Using Egs. (7), (24), and (25) we can write AF in the
general form:

AF = —((e) + Ae)M(pa,r)({e) + Ae) + |Ae|P(r).
(28)

The vector (e) is defined as {(e), (e)} and Ae is given
by {—Ae/2,+Ae/2}. M is a 2 X 2 matrix containing the
above given integrals as elements. The scalar expression
|Ae|P(r) is the first-order term given by Eq. (24), hence
P(r) is given by AF(1)(r)/|Ae|. Since (e) is by definition
a small number the leading contribution is given by

AF ~ —(e)>M(r,pa) + AeP(r)

= —(e)? (M(r,pA) - a—ezp(r)) ; (29)

where M is defined as the sum over all matrix elements
of M. The corrections to that scaling will be of the order
Ae/(e).

One can see that AF scales as the square of the aver-
age selectivity for vanishing asymmetry. This is qualita-
tively the same result as in the fully symmetric case; see
Eq. (15). However, in the present case it depends also on
the block structure because M is a function of p4. The
asymmetry appears only in the scaled form Ae/{e)?. We
define the asymmetry parameter as T' = Ae/{e)?.

Starting from the above approach we will discuss the
scaling of the minimum of AF, since this is the character-
istic parameter for the effective attraction. The equation

OAF(r)/0r = 0 is given by
FP’(rmin) = M’(TmimpA) ) (30)

where 7.,;, denotes the minimum value of r. Hence, the
minimum delocalization can be written by a scaling func-
tion:

Tmin — hi(FaPA) . (31)

The upper index + denotes the fact that A* is not nec-
essarily symmetric by changing the sign of I'. For small
asymmetry parameter h* may by expanded in series as
follows:

B o (pa — 1/2)°his +Thi(pa) - (32)

The numerical results show that in the symmetric case
I’ = 0 the minimum is shifted by a small amount if p4 #
1/2.

On the other hand, P(r) can be expanded into P(r) ~
Pyr; see Eq. (24). M(r,pa) can be approached by
mo(pa) + mi (pa)r? for small .

Hence, the minimum of the free energy can be written
in the form

AFpmin(T) = —(e)*mo(pa)g™(T)
= AFmin(0)g™(T) . (33)

From the series expansion of the individual terms one
can obtain the approach of g* for small asymmetry pa-
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rameters. It takes the form

g () =14 ¢fT% + ¢3T(pa — 1/2)%r0
+q3(pa — 1/2)%2 . (34)

The coefficients ¢ and 7o are combinations of the expan-
sion coefficients h and m given above. The numerics
shows that 7 is a small number. Hence the derivation to
the leading scaling of AFy,;, are second order in T.

B. Numerical results

We will now discuss the numerical results for the
interfacial free-energy contribution in the second-order
AF = AF®) 4+ AF® to verify the above scaling argu-
ments. Beyond this, some details of the behavior of the
solution can be visualized. The limits of the scaling ap-
proach as well as the scaling functions can be obtained.

Only the multiple integrals I; and I3 have to be cal-
culated numerically. I; and I, are of the same type by
mirroring the r coordinate. We did this for 81 differ-
ent r values chosen equidistant between r/R = —2 and
r/R = 2.

Figure 5 shows the comparison between the first- and

0.006 T T T T T

0.004

0.002

AF, AF" and A F®

-0.002

-0.004

distance to the interface r/R

FIG. 5. Plot of the free energy AF(r/R) together with
the first- and second-order contribution. The parameters
are (e) = 0.1, Ae = —0.0056 - I' = —1/2, and na = np
(pa = 1/2). The favored solvent is on the right-hand side
(a > b). The first-order contribution (upper curve) is repelling
the diblock from the interface. The second-order contribution
is attracting (polarization effect).
contribution hence shows both features. The minimum is
shifted into the favored solvent and is lifted up due to the
first-order contribution. For larger distances the nonfavored
solvent becomes purely repulsive.

The whole second-order -

0.02
0.015

0.01

-0.005

-2 -1 o] ) . 1 - 2
distance to the interface r/R

FIG. 6. The free-energy function per diblock for different
values of I" plotted against the reduced distance to the inter-
face r/R. The block structure is symmetric and the average
selectivity is (¢) = 0.1. The asymmetry parameter I' takes the
values 0,0.5,0.75,1,2. For values larger than 1 the minimum
is extremely reduced. The first-order contribution dominates.

0.02

0.015

0.01

AF(r/R)

0.005 [

-0.005

distance to the interface r/R

FIG. 7. The free-energy function per diblock as a func-
tion of the reduced distance to the interface r/R. The block
structure is asymmetric ps = 0.8. The average selectiv-
ity is (¢) = 0.1. The asymmetry parameters are chosen as
0,+1/2,4+2. The curves for nonvanishing asymmetry are not
mirror symmetric. The shift of the minimum and the depth
are different for positive and negative asymmetry parameters,
respectively.
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the second-order contribution AF() and AF®), respec-
tively, together with the sum, the complete second-order
contribution. The parameters for that plot are p4 = 0.5,
(e) = 0.1, and Ae = 0.005. The corresponding asym-
metry parameter is I' = 1/2. Note that the free-energy
change by crossing the interface is already larger than
the depth of the minimum.

Figure 6 shows the interfacial free energy for different
asymmetry parameters I' ranging from 0 to —2. Again, a
symmetric diblock configuration is chosen, i.e., p4 = 0.5.

(a)

04 1
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Note the strong shift of the free-energy minimum into the
favored solvent when the asymmetry parameter becomes
of the order unity.

In Fig. 7 the situation is shown for p4 = 0.8, i.e., non-
symmetric diblocks. The plots are not mirror symmetric
with respect to 7 by changing the sign of the asymmetry.
For positive symmetries (b > a, left-hand side is pre-
ferred) we have a smaller shift of the minimum r;, but
a stronger liftup of its value AFyy,; see also Figs. 8(c)
and 9(c).
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FIG. 8. Reduction of the depth of the free-energy minimum as a function of the asymmetry parameter I Eight dif-
ferent averaged selectivities are used: (e) = 0.001,0.005,0.01,0.02,0.05,0.08,0.1,0.12. When the asymmetry parameter is
smaller than unity a strong universality can be seen. The plots (a)—(d) show the situation for different block length ratios:
pa = 0.5,0.6,0.8,1.0. For larger block asymmetries both “wings” of the plots become more asymmetric too. But there is a
limiting case for ps — 1 given in (d). The leading I scaling can be represented in the function g* (T, pa) as given in Eq. (33).
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The four parts of Fig. 8 demonstrate this in detail for
pa = 0.5, 0.6, 0.8, and 1.0, respectively. Note that the
limit py — 1 has been taken keeping a and b finite. The
depth of the free-energy minimum AFp,;,(T') normalized
to the symmetric case AFp,;n(0) is plotted against the
asymmetry parameter I' = Ae/(e)%. Eight different val-
ues of (e) are chosen for the different curves. Up to an
asymmetry parameter value of order unity a universal
behavior is obtained. This is predicted by Eq. (33).
Note also the strong decay of the minimum depth in

£
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that range. For larger values of I' the behavior becomes
nonuniversal for different (e) as expected.

Comparison of the four plots shows the influence of
the block length asymmetry controlled by ps. The de-
cay for positive asymmetry parameters becomes stronger
for increasing p4. This is especially pronounced in the
universal region I' < 1.

It is worth noting that the limiting case set a finite
correction for that deviation. So the behavior for all dif-
ferent p4 values are located in a finite stripe between
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FIG. 9. Same as in Fig. 8 except for the position of the free-energy minimum. Again the leading scaling for the shift of the
position minimum is given by a function A% (T',pa), Eq. (31). For rmin/R > 1 the curves diverge from each other. The minimal
resolution of Ar = 0.05 of the numerical calculation is visible in that case. If block asymmetry is present, too, the shift is

smaller if the shorter block is more repelled by the interface.
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pa = 0.5 and pg — 1 if a and b are fixed. Hence, the
quality of the p4 dependence is not the same as for the
a-b scaling; see also Fig. 10.

The next set of plots in Fig. 9 shows the shift of
the free-energy minimum for the same parameters as in
Fig. 8. Since AF is calculated on a lattice with spacing
0.05 the minimum calculation cannot be more precise.
This is particularly visible for larger asymmetry param-
eters. Again, in the universal region (I' < 1) a pure I’
scaling is predicted; see Eq. (31).

Block asymmetry (pa # 1/2) results in two effects.
First, even for the case a = b the minimum of AF is
shifted. This can be seen for p4 > 0.6. Second, the
minima are less shifted for positive asymmetry than for
negative ones. The points for I' = 0.4 in Figs. 9(c) and
9(d) clearly show this. Note that for positive asymmetry
and ps > 1/2 the shorter blocks are repelled more by
changing the solvent.

For fixed values of the parameter I', the free-energy
minimum should scale as (e)?; see Eq. (33). This is shown
in Fig. 10. Six functions are plotted corresponding to
the asymmetry parameter values of 0, 0.4, and 4.4 for
the cases pg = 0.5 and py ~ 1, respectively. One can
see that the block structure changes only very slightly
the minimum value of the free energy if the asymmetry

10-2 T T T T T T T T
1073 4
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103 0.002 0005102 002 005 107 02 05

average selectivity <e>

FIG. 10. Depth of the free-energy minimum as a function
of the average selectivity strength for different asymmetry pa-
rameters and block ratios. The upper two curves, which co-
incide completely, have zero asymmetry. pa has the extreme
values of 1/2 and 1, respectively. A slide splitting is visible
for the value I" = 0.4 of the asymmetry parameter in the mid-
dle pair of curves. For an asymmetry parameter of I' = 4.4 a
difference between ps = 1/2 and pa — 1 is very clear. The
slope of all curves is close to 2. This is an exact result for zero
asymmetry.

parameter is small. In contrast, if the asymmetry param-
eter is much larger than unity a remarkable splitting of
the graphs can be found. This is shown by the two lower
lines in Fig. 10, which both correspond to the asymmetry
parameter value of I' = 4.4.

C. Adsorption phase diagram

In analogy to Sec. ITI C we will consider the adsorption
crossover of the whole copolymer chain now in the general
case. Due to the renormalization procedure described
in Sec. II it is mapped into a homopolymer adsorption
problem. Each renormalized monomer is a diblock of
size R and is subjected to an effective interface potential
AF(r).

The difference with Sec. III C consists in the asymmet-
ric potential form of AF(r), see Figs. 5-7. Since we are
not interested in details for scales smaller than R we can
make use of a simplified model for the function AF(r) as
given in the left part of Fig. 11. The two characteristic
parameters are the depth of the minimum € = AFy,;, and
the height of the potential step Ae. It is further possi-
ble to establish a continuous model for the renormalized
chain. In that case the potential box can be considered
as a ¢ distribution of intensity eR. This is sketched in
the right-hand side of Fig. 11. It takes the form

Uioc (1) = —€R6(r) + AeO(r). (35)

The problem is now the adsorption of a homopoly-
mer chain in a pseudo-potential near a repulsive poten-
tial wall. Note that the adsorption problem of polymers
near solid surfaces is of the same nature but with an in-
finitely high potential wall. Note that for the present
problem both the adsorption potential and the potential

) F(r)

Ae -+ S ———r ne

/R

FIG. 11. Simplified adsorption energy profile. On the
left-hand side we show the adsorption profile by averaging
over distances of order R. The profile is a combination of a
step function of height Ae and a potential box of depth € and
width R. The right-hand side shows the profile by going over
to a continuous chain. The potential box goes over to a §
profile.
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wall have small values.

The adsorption free energy for the chain starting at
the interface in the first order of perturbation expansion
in respect to Uyec(r) is

Fug~ —efV/ + 1Aef (36)
where we have suppressed constant factors in the first
term. Note that this is the same expression as the corre-
sponding de Gennes approach gives.

As far as the absolute values of both terms in Fyq
are small the perturbation expansion is good. When the
above expression is comparable to the translational free
energy of the chain it will adsorb at the interface. At
the same time the expansion term cannot be considered
as small anymore and the whole series is expected to di-
verge. The statistics of the adsorbed chain is not only
a small perturbation of the statistics of the unperturbed
free chain after the adsorption crossover. This argument
leads to the usual crossover condition (units of kgT):

|Fad| ~ 1. (37)

However, the difference with the usual adsorption
problem is the competition of the the two terms in
Eq. (36). Formally F,4 is always repulsive for large
enough values of f. Figure 12 displays the situation.
Generally two cases have to be distinguished depending

l:ad(f) / '

adsorbed state

FIG. 12. The adsorption free energy F.a(f) as a function
of the chain length f according to Eq. (36) for two cases of
the parameter Ae/e?. For Ae/e? < 1/2 adsorption is not
possible for any chain length. For large chain length the in-
terface will be repulsive. If Ae/e? > 1/2 the function crosses
the line —1 at the crossover chain length f.. Due to the ad-
sorption crossover the number of monomers at the interface is
proportional to f; see Eq. (41). The adsorption energy decays
linearly for f > f.. This is shown by the solid arrow. The
rest of the function Fa.q in Eq. (36) will be no more a proper
solution for the adsorbed chain (dashed line).

on whether the minimum of F,4(f) is deeper than —1 or
not.

If the minimum is shallower than —1 the upturn starts
before adsorption can occur. Hence in that case adsorp-
tion is not possible for all chain lengths f. This is also
visible from the general solution of Egs. (36) and (37)
giving the adsorption crossover:

12 _ € B QZAe
fe T Ae (1 1 62>

If the expression under the square root is smaller than
zero there is no solution of the adsorption equation, the
minimum of Fpq(f) is higher than —1; see Fig. 12. Since
€ = AFp, scales like the square of the average selectivity
[see Eq. (33) and Fig. 10], we get the following necessary
adsorption condition:

(38)

Ae < (e)* . (39)
This means that the asymmetry of the solvent selectivity
has to be small for the fourth order to allow for adsorp-
tion. This defines the adsorption phase diagram in the
(e)-Ae plane given in Fig. 13. Only the states located in
the cone allow for adsorption.

We consider now the situation when the above ad-
sorption condition is fulfilled. The function F,q(f) in
Fig. 12 crosses the line Fo4q(f) = —1. The corresponding
crossover chain length is given by Eq. (38).

For chain lengths larger than f. the polymer will be
adsorbed, i.e., it adopts a flat shape around the interface.

As discussed in Sec. IIIC the adsorbed chain can be
considered as a two-dimensional chain of adsorption blobs
of mass g and size W. These adsorption blobs are just
“critical,” i.e., g ~ fo and W ~ ,:1/2. Since each adsorp-
tion blob contributes kT (or unity in our convention)
to the adsorption free energy one gets for f > f. simply

Faa(f > fe) ~ —f/fe (40)

NA

<e>

NA

FIG. 13. An adsorption phase diagram. The adsorbable
states A are inside the cone. Outside the cone adsorption is
not possible in the weak selectivity limit N A. Both curves are
given by Eq. (39).
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This implies that the function F,q(f) goes over from
Eq. (36) into Eq. (40) when the chain length is crossing
the adsorption condition (solid arrow in Fig. 12).

As a consequence the number of chain units directly at
the surface f; increases linearly with f past the adsorp-
tion crossover:

fulf > £ = £2 L

_ g-1/2
FARE O A

(41)

V. DISCUSSION

We have shown that adsorption of multiblock copoly-
mers at interfaces between weakly selective solvents is
generally governed by four control parameters, the aver-
age selectivity (e), the selectivity asymmetry parameter
' = Ae/(e)?, the block length ratio p4, and finally the
number of diblocks f. The first three parameters deter-
mine a unique free-energy profile for a single diblock near
the interface.

We found in Sec. IV C that adsorption at weakly se-
lective interfaces is very sensitive to the asymmetry of
the copolymer-solvent system. Only very close to the
symmetry condition xan4 = xsnp is adsorption possi-
ble; see also Fig. 13. In that case the effective interface
attraction € of an individual diblock scales as (e)2.

The crossover chain length in units of diblocks is given
by Eq. (38) in the general case. For small ratios Ae/e2
the results of Table I are reproduced.

Equation (38) predicts a largest adsorption blob size

fmax. If the square root is zero f. remains finite for
Ae > 0:
maxy1/2 _ € _ 1

Larger blobs would be unstable because of the repulsion
due to the potential step.

Note that this behavior is quite different from the case
of adsorption onto solid surfaces. A solid surface would
correspond to an infinite potential step in Eq. (35). This
cannot be treated by a naive perturbation expansion as
the corresponding critical adsorption energy e. is not
small compared to kgT. For an ideal chain it takes a
value of In(2). The chain configuration is completely dif-
ferent from the one considered in our case. There can be
no monomers in the other half space hence also the blobs
are half-space blobs. If € is larger than €. the adsorption
blobs can be arbitrarily large [8].

The crossover between both cases by increasing the
potential step and the attraction energy to larger values
is an interesting problem but goes beyond the scope of
the present work.

The main conclusions of this work can be summarized
as follows.

(i) Multiblock copolymer chains can be adsorbed at
weakly selective interfaces due to a polarization effect of
the individual diblocks. This results in the usual ho-

mopolymer adsorption at a penetrable interface.

(ii) If the selectivity of both solvents is asymmetric
with respect to both monomer sequences adsorption is
only possible if the asymmetry is very small compared to
the average attraction € of the solvent-solvent interface.
This defines a critical value €. for a given asymmetry Ae.

(iii) When asymmetry is present and € > €. the largest
adsorption blob is finite. This is a qualitatively new effect
of the weakly selective solvent-solvent interface compared
to other polymer adsorption problemis.

(iv) Due to the very sensitive dependence on asymme-
try, the solvent selectivity of such interfaces can be used
to select narrow distributions of multiblock chain archi-
tectures.

APPENDIX A: DERIVATION OF THE
EFFECTIVE POTENTIAL

The starting point here is the equation for the ideal
propagator G of the copolymer chain with the potential
given in (2):

G = DAG - U(R)b(t)G (A1)

where D is given by D = [2/6.

First, an ansatz is produced by solving the above equa-
tion without the “connectivity” term DAG.

The truncated equation takes the form

G:(R,R';t) = UR)b(t)G:(R,R';1) , (A2)

where the index t in G; denotes that this is only a partial
solution for G. The solution is given by

G¢(R,R/;t) = gexp (— /0 t b(t')dt’U(R)) . (A3)

where g is a constant for the reduced equation. Note that
this partial solution makes sense only if b(¢) is a periodic
function with equal weight for both signs. Otherwise, the
integral appearing in Eq. (A3) diverges for large t and
hence, G; has no finite value. On the other hand, if b(t)
is periodic with a finite integral G; is also periodic and
fluctuates as fast as the potential. The idea is that for
large t values there exist also a slowly varying function,
which we call g(R,R’;t). This function is distorted by
G only on small ¢ scales. Note that the solution of (A3)
oscillates around unity for the given restrictions. Thus
we make an ansatz in the following form:

G(R7 Rl;t) = g(R7 R,;t)Gt(R7 Rl;t)' (A4)
Substituting this in Eq. (5) we obtain
g=DAg+ DF*(t)(VU)* g+ DH'g, (A5)

with
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H' = —F(t) (AU - 2VUV) (A6)

Here the symbol F(t) = fot b(t')dt’ has been intro-
duced. The above equation is in principle more com-
plicated as the original one [Eq. (A2)] but contains also
the proper solution. However, only the second term in
Eq. (A5) provides a square in the periodic function F'(t).
By preaveraging over the periodic fluctuation F'(t) this is
the only term that survives. Since this result is already
nontrivial we can try it as a first approach. However, one
needs to check the “stability” of this preaveraging proce-
dure by calculating perturbatively the contributions aris-
ing from the remaining terms [4,5]. Using the chemical
block structure function b(t) of the copolymer given by
Eq. (3) the effective equation for the slow part takes the
final form:

1
§=DAg+ ZgDnz (VU)g . (A7)

This defines an effective t-independent potential. By
using this approach one has to realize the restriction to
2T max[|U(z)|] < 1. Otherwise the function G; given
by Eq. (A3) takes very large and very small values and
the picture of the slightly disturbed function g is wrong,
hence the approximation presented here.

On the other hand, for sharp potentials when the width
becomes comparable to the wavelength of the fluctua-
tion this approach breaks down. This has already been
discussed in the original papers [4,5]. In this case the
contributions due to H' become important.

APPENDIX B: INDUCED DIPOLE APPROACH

For the full symmetric case we have treated the weak
selectivity problem for an ideal chain rigorously (within
the scale R). The main physical results concern the scal-
ing of (F') with u, n, and w. Additionally we gave an in-
terpolation formula and an alternative approach for the
smooth potential. We will now present an alternative way
to understand the above results using an ad hoc dipole
model for a single diblock [11]. This will provide the same
scaling results in a much easier way and is useful for the
understanding of the physics behind the above results.

Let us consider a single diblock copolymer as a pair of
two monomer clouds interpenetrating each other. With-
out a selective potential the average distance vector be-
tween the centers of mass of the two blocks in the di-

J

n t n4 n t na t n na n t
/ dt/ dsz( dt+/ dt)/ ds:/ dt/ ds+/ dt/ ds+/ dt/ ds
0 (1] 1] na 0 (1] 1] na 0 n4 na

rection perpendicular to the interface is zero. However,
when we place it in a selective potential the two clouds
will be separated. This yields a nonvanishing average of
the separation vector perpendicular to the selective inter-
face. We will denote this displacement by Ax. This sep-
aration involves an elastic free energy Fy; of the stretched
diblock. It has the usual form, Fe; = 1/2(Az)%/R2. Due
to the stretching the diblock gains a certain selectivity
energy E. The latter may be written as the product of
the excess of the number monomers in their preferred sol-
vent An due to the stretching and the average amount of
energy per monomer (U). Hence E = An(U). The free
energy of the diblock is given by

F=Fy+E (B1)

The amount of “satisfied” monomers due to the stretch-
ing will be proportional to the gained area AA. Since
we consider only a weak deformed ellipsoid we have
AA = AzR. So we get An = (AA/A)n = nAz/R.
The above equation takes the form
1(Az)? Az

5 2 + R n(U) .
Minimization of the free energy yields the average of F'
gained by the selective potential:

(F) ~ —n*(U)? (B3)

For the case of sharp selectivity (U) is simply equal
to u and we get (up to constants) the same result as in
Eq. (15).

If the interface potential has the general structure of
Eq. (4) we get

F= (B2)

R
(U) = —2%/0 x tanh(z/w)dz
R

- —2x% In cosh(R/w) = ~2x (B4)
Hence we get for the general case,
R 2
F) ~ —4n®x? B5
() =~ (4 ) (85)

APPENDIX C: SECOND-ORDER
CONTRIBUTION
IN THE ASYMMETRIC CASE

We have to evaluate Eq. (10) for the potential given in
Eq. (1). First, it is useful to split the arclength integra-
tion into three parts in the following way:

(C1)

Now in all three terms the potentials V4 p belong to a definite species and we can use Eq. (1). It is further useful
to reduce all arclength and spatial scales by n and /n, respectively. Especially we recall the previous definition of

pa,B =na,B/n (pa+pp =1).

Hence, the expression for (V'2), has three contributions of the form
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(V) = 4a2;%11(p,,, r) + 4;,2@12(1% ) +dab L oy e (C2)
The three integrals take the form
PA t —oo P
I(pa,r) = /(; dt/0 ds‘/o dz erf (\/_2_§> G(2z —2r,1 —s), (C3)

PB t oo 2
L(pa,r) = at [ d dzerf [ =) G(22 — 2r,1 — s),
2 (pas7) / /0 / (ﬂ_) (22— 2r1— ) (C4)

1 DA —o0
Is(pa,r) = / dt/ ds/ dAz G(Az,t — s)Ses[Az,r,1 — (t — 5)]. (C5)
pa 0 0

The function Set(z,y, s) is introduced as follows:

See(z,7,8) = ;— {erf (\/g(:c + r)) + erf (\/g(m - r)) } . (C6)

Let us consider the limiting case of very small ratios of the block length, i.e., pa ~ 0 or p4 ~ 1, respectively, but
finite values of @ and b. Both cases are equivalent by switching the sign of r. We take p4 — 1. We start with the first
integral given by Eq. (C3). The limits p4 can be set to unity. The second integral, see Eq. (C4), contains a double
arclength integration with very small limits. Hence, the result of the z integration can be considered as constant at
the point s = 0. Note that the result of the double arclength integration is given by p%/2. The square of pp cancels
just the corresponding prefactor. The whole integral can be treated exactly. In the third integral [Eq. (C5)] the t
integration can be treated also in this way and the s integration extends to unity. All together we obtain for p4 — 1:

1 1 t —oo P .

—1T ,r”"_’lz/ dt/ ds/ dzerf(—)G22—2r,1—s, C7
pi l(pA ) o 0 0 \/ﬂ ( ) ( )

1 oo

S (pa, P = 5 [ dsGlzz -2 1) = g1+ er(Vr)) (C8)
Py 2 Jo 8
1 1 —oo

Is(pa, )P4t = / ds/ dAz G(Az,1 — s)See[(Az, 7, s)]. (C9)
pAPB 0 0 :

Note that the limiting process, of cause, eliminates the explicit appearance of ps (pg).
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